Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Spine Journal ; : 15-23, 2017.
Article in English | WPRIM | ID: wpr-170783

ABSTRACT

STUDY DESIGN: Researchers created a proper type II dens fracture (DF) and quantified a novel current posterior fixation technique with spacers at C1–C2. A clinical case study supplements this biomechanical analysis. PURPOSE: Researchers explored their hypothesis that spacers combined with posterior instrumentation (PI) reduce range of motion significantly, possibly leading to better fusion outcomes. OVERVIEW OF LITERATURE: Literature shows that the atlantoaxial joint is unique in allowing segmental rotary motion, enabling head turning. With no intervertebral discs at these joints, multiple ligaments bind the axis to the skull base and to the atlas; an intact odontoid (dens) enhances stability. The most common traumatic injury at these strong ligaments is a type II odontoid fracture. METHODS: Each of seven specimens (C0–C3) was tested on a custom-built six-degrees-of-freedom spine simulator with constructs of intact state, type II DF, C1–C2 PI, PI with joint capsulotomy (PIJC), PI with spacers (PIS) at C1–C2, and spacers alone (SA). A bending moment of 2.0 Nm (1.5°/sec) was applied in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). One-way analysis of variance with repeated measures was performed. RESULTS: DF increased motion to 320%, 429%, and 120% versus intact (FE, LB, and AR, respectively). PI significantly reduced motion to 41%, 21%, and 8%. PIJC showed negligible changes from PI. PIS reduced motion to 16%, 14%, and 3%. SA decreased motion to 64%, 24%, and 54%. Reduced motion facilitated solid fusion in an 89-year-old female patient within 1 year. CONCLUSIONS: Type II odontoid fractures can lead to acute or chronic instability. Current fixation techniques use C1–C2 PI or an anterior dens screw. Addition of spacers alongside PI led to increased biomechanical rigidity over intact motion and may offer an alternative to established surgical fixation techniques.


Subject(s)
Aged, 80 and over , Female , Humans , Atlanto-Axial Joint , Head , Intervertebral Disc , Joints , Ligaments , Range of Motion, Articular , Skull Base , Spine
2.
Asian Spine Journal ; : 854-862, 2017.
Article in English | WPRIM | ID: wpr-21816

ABSTRACT

STUDY DESIGN: In vitro biomechanical investigation. PURPOSE: To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. OVERVIEW OF LITERATURE: Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interbody screws; four alternating, converging screws through a polyether-ether-ketone (PEEK) spacer; and four converging screws threaded within the PEEK spacer. Conflicting reports on the stability of stand-alone devices and the influence of device design on biomechanics warrant investigation. METHODS: Fourteen cadaveric lumbar spines were divided randomly into two equal groups (n=7). Each spine was tested intact, after discectomy (injured), and with PEEK interbody spacer alone (S), anterior lumbar plate and spacer (AP+S), bilateral pedicle screws and spacer (BPS+S), circumferential fixation with spacer and anterior lumbar plate supplemented with BPS, and three-screw (SA3s) or four-screw (SA4s) integrated spacers. Constructs were tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Researchers performed one-way analysis of variance and independent t-testing (p≤0.05). RESULTS: Instrumented constructs showed significantly decreased motion compared with intact except the spacer-alone construct in FE and AR (p≤0.05). SA3s showed significantly decreased range of motion (ROM) compared with AP+S in LB (p≤0.05) and comparable ROM in FE and AR. The three-screw design increased stability in FE and LB with no significant differences between integrated spacers or between integrated spacers and BPS+S in all loading modes. CONCLUSIONS: Integrated spacers provided fixation statistically equivalent to traditional techniques. Comparison of three-screw and four-screw integrated anterior lumbar interbody fusion spacers revealed no significant differences, but the longer, larger-diameter interbody spacer with three-screw design increased stabilization in FE and LB; the diverging four-screw design showed marginal improvement during AR.


Subject(s)
Cadaver , Diskectomy , Equipment Design , In Vitro Techniques , Intervertebral Disc Degeneration , Lumbosacral Region , Pedicle Screws , Range of Motion, Articular , Spine
SELECTION OF CITATIONS
SEARCH DETAIL